條件機率 vs 聯合機率
前言 & 概述
在前一篇文章中,我們介紹了機率的基本觀念,包含 表示法 (Notation)、隨機變數 (Random Variable, RV)、三種基本的機率類型與乘法法則 (Multiplication Rule)。其中,三種基本機率類型中的「條件機率」與「聯合機率」經常使初學者分不清楚。因此,在本篇文章中,將會以更簡單的方式說明兩者的差別。此外,我們也會了解機率中「AND」、「OR」的概念。
條件機率 (Conditional Probability)
在前一篇文章中,我們介紹過條件機率的定義。「條件機率」(Conditaionl Probability) 指的是某一個事件發生的「前提」之下,另外一個事件發生的機率。例如,A 與 B 是兩個不的事件,在 B 事件發生的前提下,A 事件發生的機率為 P(A | B)。
我們也以撲克牌的例子說明:假設 B = 「抽出紅色的卡牌」,A = 「抽出數字 4 的卡牌」,則 P(A | B) = 2/26 (因為已經先抽出 26 張紅色的卡牌,其中包含兩張數字 4)。
聯合機率 (Joint Probability)
在前一篇文章中,我們也介紹過聯合機率的定義。「聯合機率」(Joint Probability) 指的是「兩個或多個」事件同時發生的機率。A 與 B 是兩個不同的事件,A 與 B 同時發生的機率為 P(A ∩ B)。「∩」符號稱為「交集」,就是指兩個都要的意思。
我們也以撲克牌的例子說明:假設 A =「從一副撲克牌中抽出一張 6」且 B =「從一副撲克牌中抽出一張紅色」,則 P(A ∩ B) = 2/52 (因為一副撲克牌有 52 張,同時是 6 又是紅色的有 2 張)。
條件機率 vs 聯合機率
對於第一次接觸機率概念的初學者而言,條件機率與聯合機率的概念還是稍微難以區分。因此,我們接著更深入的討論兩者的區別。
繼續前面撲克牌的例子,假設我們希望計算「抽出一張紅色卡牌且為數字 4」的機率,此機率就是聯合機率,可以表示為 P(Red and 4) = P(Red ∩ 4)。要計算這一個聯合機率,我們可以想像現在桌面上擺放著 52 張撲克牌,而且這些撲克牌都是「蓋上」的,因此我們不知道每張撲克牌實際的顏色與數字。但是,我們知道這 52 張卡牌中,顏色是紅色且數字為 4 的卡牌有 2 張。因此,P(Red and 4) = 2/52。
另外一種情況,假設我們希望計算「抽出一張數字為 4 的卡牌,且已經知道他是紅色」的機率,此機率就是條件機率,可以表示為 P(4 | Red)。要計算這一個條件機率,我們可以想像桌面上擺放著所有的 52 張撲克牌,但是抽出卡牌之前,我們已經事先將所有紅色的卡牌取出,並且攤開在桌上。又 26 張紅色的卡牌中,包含了 2 張數字 4 的卡牌。因此 P(4 | Red) = 2/26 = 1/13。
此外,我們也可以透過乘法法則 (Multiplication Rule) 計算上述的問題。以聯合機率 P(Red and 4) 為例,P(Red and 4) = P(4 and Red) 會等於 P(4 | Red) × P(Red) = 1/13 × 1/2 = 1/26 = 2/52。
補充:P(Red) = 1/2,因為 52 張撲克牌中有一半是紅色的!
AND vs OR
- AND
在前面的例子中,我們解釋了聯合機率與條件機率的差別。然而,我們卻沒有提到該怎麼計算聯合機率 (Joint Probability)。所謂的聯合機率,即是兩個事件「同時」發生的機率。例如,P(A ∩ B) 即是 A 事件與 B 事件同時發生的機率。以乘法法則的角度出發,P(A ∩ B) = P(A | B) × P(B)。
我們再以一個生活化的例子說明聯合機率該怎麼算!假設現在我們手中有兩個骰子,A 事件 = 「第一顆骰子為 6」、B 事件 = 「第二顆骰子為 1」。
根據乘法法則,我們可以先計算 P(A | B) 與 P(B) 而得到 P(A ∩ B)。P(A | B) 指的是在「『第二顆骰子為 1』的前提下,『第一顆骰子為 6』的機率是多少」。聰明的你一定知道,不管第二顆骰子的結果為何,都和第一顆骰子沒有任何關係啊!因此,我們可以說 A 事件與 B 事件互為「獨立事件」。
當 A 事件與 B 事件互為獨立時,A 事件發生的機率不會受到 B 事件影響,因此 P(A | B) = P(A)。
再回到乘法法則,我們可以得到 P(A ∩ B) = P(A) × P(B) = 1/6 × 1/6 = 1/36。 - OR
在 AND 時,我們會將所有事件發生的機率「相乘」;在 OR 時,我們會將所有事件發生的機率「相加」。在數學上,會表示為 P(A ∪ B) = P(A) + P(B) – P(A ∩ B)。
其中,因為 P(A) + P(B) 時,A 與 B 重疊的部分會重複計算,因此需扣掉一次重疊的部分。
我們再以一個生活化的例子說明 OR 的概念!假設現在我們手中有兩個骰子,A 事件 = 「第一顆骰子為 6」、B 事件 = 「第二顆骰子為 1」。
則 P(A ∪ B) = 1/6 + 1/6 – 1/36 = 11/36。
結語
在本篇文章中,我們更深入的說明條件機率 (Conditional Probability) 與聯合機率 (Joint Probability) 的差別,也說明機率中 AND 與 OR 有什麼差別。若想學習更多機率的觀念,推薦到 Coursera 上報名葉丙成教授的頑想學概率!
👣 👣 👣 我喜歡撰寫程式開發、資料科學領域相關的文章,希望可以透過簡單的文字解釋複雜的觀念!如果你也有興趣可以到我的其他平台逛逛哦!
👉🏻 DataSci Ocean
👉🏻 YouTube
👉🏻 Instagram
延伸閱讀
👉🏻 Google Colaboratory 介紹
👉🏻 使用機器學習解決問題的五步驟
👉🏻 將 Django App 部署到 Heroku on Mac
👉🏻 在 LINE Developers 上建立 LINE Bot
Like my work? Don't forget to support and clap, let me know that you are with me on the road of creation. Keep this enthusiasm together!